## TRANSPUTER NETWORKS: CONFIGURATION LANGUAGE

Three features of OCCAM 2 language are used to configure multiprocessor networks:

PLACED PAR

PROCESSOR <number> <transputer.type>

PLACE <channel.name> AT <address>

#### Observe that:

- 1. The <transputer.type> information is used by the configurer to check that the code generated by the compiler was created with the compatible transputer in mind.
- 2. The <number> of the transputer is immaterial for the configuration; it may be useful, though, in the diagnostic messages from the configurer, to identify the processor.
- 3. The PLACE statement is used to associate OCCAM 2 channels with processor links. The links are mapped into memory and are referred to using their addresses. Currently, there are eight such links (four for input, four for output):

```
VAL link0out IS 0: VAL link0in IS 4:
VAL link1out IS 1: VAL link1in IS 5:
VAL link2out IS 2: VAL link2in IS 6:
VAL link3out IS 3: VAL link2in IS 7:
```

## TRANSPUTER NETWORKS: CONFIGURATION EXAMPLE

REMINDER: Channels are used to provide unbuffered, unidirectional links between processes. These processes may run on different processors.

Consequently, a channel connecting two processes on different processors must be placed on an input link address of one processor and on an output link address of another processor.

EXAMPLE: Consider a network of four T414 transputers on the IMS B003 evaluation board.

We want to run four processes: one called boss and three other being parallel instantiations of the work code, running on different processors. Specifications:

PROC boss (CHAN OF BOSSINFO hostin, hostout, CHAN OF WORKINFO in, out)

PROC work (CHAN OF WORKINFO in, out)

#### Having declared:

CHAN OF BOSSINFO from.host, to.host: [4]CHAN OF WORKINFO ring:

# TRANSPUTER NETWORKS: CONFIGURATION EXAMPLE (Continued)

We want the following logical relationship between processes:

```
CHAN OF BOSSINFO from.host, to.host:
[4]CHAN OF WORKINFO ring:
PAR
  boss(from.host, to.host, ring[0], ring[3])
  PAR i = 1 FOR 3
  work(ring[i - 1], ring[i])
```

This relationship could be depicted as:



## TRANSPUTER NETWORKS: CONFIGURATION EXAMPLE (Continued)

Allocation of a separate processor to the boss process and to each instance of the work process results in the following configuration:



### TRANSPUTER NETWORKS: **CONFIGURATION EXAMPLE** (Continued)

The emerging code implementing the desired hardware configuration:

```
CHAN OF BOSSINFO from.host, to.host:
[4] CHAN OF WORKINFO ring:
PLACED PAR
  PROCESSOR 0 T414
   PLACE from.host AT LOin:
   PLACE to.host AT LOout:
   PLACE ring[0] AT L2out:
   PLACE ring[3] AT L3in:
   boss(from.host,to.host,ring[0],ring[3])
  PLACED PAR i = 1 FOR 3
    PROCESSOR i T414
     PLACE ring[i - 1] AT L3in:
     PLACE ring[i] AT L2out:
     work(ring[i - 1],ring[i])
```

NOTE: in conventional terms, the boss and work processes could be viewed as ordinary procedures, written in any language. OCCAM 2 allows calling and being called by 'alien' language programs.